organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-[3,4-Bis(ethoxycarbonylmethoxy)phenyl]-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a.4a-diaza-s-indacene

Dong-Chuan Wang,^a Zhi-Zhi Hu,^b Hai-Jun Chi,^b Zhi-Qiang Zhang^b and Xiao-Jun Peng^a*

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, People's Republic of China, and ^bSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114044, People's Republic of China Correspondence e-mail: pengxj@dlut.edu.cn

Received 30 May 2007; accepted 1 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.152; data-to-parameter ratio = 13.6.

In the title compound, $C_{27}H_{31}BF_2N_2O_6$, the benzene ring is almost perpendicular to the fused-ring system [the dihedral angle is 82.3 (1)°]. The B–N distances in the central ring are almost identical, indicating delocalization of the formal positive charge over the two N atoms.

Related literature

For background, see: Wu et al. (2005); Trieflinger et al. (2005); Dost et al. (2006); Qin et al. (2005); Yu et al. (2007).

Experimental

Crystal data

$C_{27}H_{31}BF_2N_2O_6$	V = 2669.0 (3) Å ³
$M_r = 528.35$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.6068 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 7.5418 (6) Å	T = 298 (2) K
c = 36.896 (2) Å	$0.62 \times 0.21 \times 0.08 \text{ mm}$
$\beta = 93.231 \ (5)^{\circ}$	

Data collection

Bruker SMART APEX II CCD	12387 measured reflections
diffractometer	4681 independent reflections
Absorption correction: multi-scan	2283 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.079$
$T_{\min} = 0.940, \ T_{\max} = 0.992$	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.056$ wR(F ²) = 0.152 S = 0.93 4691 meteore	343 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^{-3}$
4681 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).	
----------------------------	--

B-N1	1.533 (5)	B-N2	1.537 (5)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support from the National Natural Science Foundation of China (20472012) and the Natural Science Foundation of Liaoning Province (20062186) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2443).

References

- Bruker (1997). SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dost, Z., Atilgan, S. & Akkaya, E. U. (2006). Tetrahedron, 62, 8484-8488.
- Qin, W. W., Baruah, M., Van der Auweraer, M., De Schryver, F. C. & Boens, N. (2005). J. Phys. Chem. A, 109, 7371-7384.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Trieflinger, C., Rurack, K. & Daub, J. (2005). Angew. Chem. Int. Ed. 44, 2288-2291

Wu, Y. K., Peng, X. J., Guo, B. C., Fan, J. L., Zhang, Z. C., Wang, J. Y., Cui, A. J. & Gao, Y. L. (2005). Org. Biomol. Chem. 3, 1387-1392.

Yu, Y. H., Shen, Z., Xu, H. Y., Wang, Y. W., Okujima, T., One, N., Li, Y. Z. & You, X. Z. (2007). J. Mol. Struct. 827, 130-136.

Acta Cryst. (2007). E63, o3106 [doi:10.1107/S1600536807026979]

8-[3,4-Bis(ethoxycarbonylmethoxy)phenyl]-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene

D.-C. Wang, Z.-Z. Hu, H.-J. Chi, Z.-Q. Zhang and X.-J. Peng

Comment

Boron-dipyrromethene (BODIPY) dyes are well known as fluorescence labels and biomolecule sensors (Wu *et al.*, 2005; Trieflinger *et al.*, 2005; Dost *et al.*, 2006). So As part of our ongoing studies of BOPIPY species (Qin *et al.*, 2005; Yu *et al.*, 2007) the structure of the title compound, (I), (Fig. 1) is now reported.

The BODIPY skeleton formed by the three conjugated heterocyclic rings is almost coplanar, with an r.m.s. deviation of 0.061 (3) Å; the maximum deviations from the mean plane are 0.113 (3) Å for B and 0.094 (3) Å for C4. Perhaps due to the presence of the C3 and C10 methyl groups, the benzene ring is almost perpendicular to the BODIPY mean plane, with the dihedral angle is $82.3 (1)^\circ$. The B—N distances in the central ring are almost identical, indicating delocaization of the formal positive charge on one of the N atoms (Table 1).

Experimental

8 mmol (0.8 ml) of 2,4-dimethyl-pyrrole and 4 mmol (1240 mg) (2-ethoxycarbonylmethoxy-4-formyl-phenoxy)-acetic acid ethyl ester were dissolved in 350 ml absolute DCM and 0.15 ml trifluoroacetic acid was added immediately under an nitrogen atmosphere. After being stirred at room temperature for 8 h, 320 ml DCM was evaporated, a solution of 2,3-dichloro-5,6-dicyano-benzoquinone (4 mmol) in DCM (30 ml) was added and stirred for half an hour, followed by injecting 74 mmol triethylamine (8 ml) into the dark residue. Then 75 mmol (12 ml) boron trifluoride ethyl ether complex was injected slowly. After stirring for 3 h, the solution was washed with an aqueous solution of NaHCO₃, the organic layer was dried over Na₂SO₄, and the solvent was evaporated by reduced pressure.

Chromatography on a silica column was carried out and eluted with ethyl acetate/petroleum ether (1:4 v/v) mitxture. The collected red fraction was subsequently recrystallized from chloroform/hexane (1:4 v/v) to acquire 507 mg (yield 24%) of the title compound.

Red slabs of (I) were acquired after 7 weeks by slow evaporation of a DCM/hexane (1:2 v/v) solution.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = 1.5U_{eq}(C)$ (methyl) or $1.2U_{eq}(C)$ (aromatic).

Figures

8-[3,4-Bis(ethoxycarbonylmethoxy)phenyl]- 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene

Crystal data	
$C_{27}H_{31}BF_2N_2O_6$	$F_{000} = 1112$
$M_r = 528.35$	$D_{\rm x} = 1.315 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 392K K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.6068 (6) Å	Cell parameters from 6052 reflections
<i>b</i> = 7.5418 (6) Å	$\theta = 2.2 - 27.5^{\circ}$
c = 36.896 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 93.231 (5)^{\circ}$	T = 298 (2) K
$V = 2669.0 (3) \text{ Å}^3$	Slab, red
Z = 4	$0.62 \times 0.21 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX II CCD diffractometer	4681 independent reflections
Radiation source: fine-focus sealed tube	2283 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
Detector resolution: 3.53 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.2^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$k = -8 \rightarrow 8$
$T_{\min} = 0.940, \ T_{\max} = 0.992$	$l = -43 \rightarrow 43$
12387 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.152$	$w = 1/[\sigma^2(F_0^2) + (0.0659P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

<i>S</i> = 0.93	$(\Delta/\sigma)_{max} < 0.001$
4681 reflections	$\Delta\rho_{max} = 0.25~e~\text{\AA}^{-3}$
343 parameters	$\Delta \rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. Mp.: 392-393 K(uncorrected);

¹H NMR (CDCl₃, 400 MHz): δ 6.961 (d, 1H, Ar—H, J = 8.4 Hz), 6.840 (dd, 1H, Ar—H, J = 8.0 Hz), 6.746 (d, 1H, Ar—H, J = 1.2 Hz), 5.962 (s, 2H, pyrrole-H), 4.763 (s, 2H, methoxy-H), 4.698 (s, 2H, methoxy-H), 4.287–4.234 (m, 2H, ethoxy-H), 4.222–4.169 (m, 2H, ethoxy-H), 2.530 (s, 6H, pyrrole-CH₃), 1.430 (s, 6H, pyrrole-CH₃), 1.278 (t, 3H, ethyl ester-CH₃), 1.242 (t, 3H, ethyl ester-CH₃);

¹³C NMR (CDCl₃, 400 MHz): δ 168.667, 168.464, 155.704, 148.751, 148.432, 143.270, 140.728, 131.649, 128.818, 121.834, 121.341, 115.443, 114.494, 66.679, 66.292, 61.616, 61.555, 14.720, 14.500, 14.280, 14.211;

HRMS(TOF MS EI⁺): Found: 528.2246, calculated: 528.2243.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O6	-0.1822 (2)	0.8666 (3)	0.06347 (5)	0.0579 (6)
05	-0.00951 (19)	1.0920 (3)	0.04268 (5)	0.0507 (6)
O4	0.2203 (2)	0.9416 (3)	0.02309 (5)	0.0577 (6)
F2	0.5394 (2)	1.1742 (3)	0.24401 (5)	0.0815 (7)
C27	0.1234 (3)	1.0922 (4)	0.10128 (8)	0.0458 (8)
H27A	0.1871	1.1750	0.0936	0.055*
O3	0.3274 (2)	1.1992 (4)	0.01361 (6)	0.0743 (8)
C26	0.0153 (3)	1.0365 (4)	0.07791 (7)	0.0424 (8)
N2	0.3670 (3)	1.2976 (4)	0.20215 (7)	0.0535 (7)
C25	-0.0805 (3)	0.9139 (4)	0.08945 (8)	0.0467 (8)
N1	0.4885 (3)	1.0196 (4)	0.18797 (6)	0.0534 (7)
F1	0.61150 (19)	1.2953 (3)	0.19255 (6)	0.0860 (7)
O2	-0.3397 (2)	0.4649 (3)	0.08974 (7)	0.0765 (8)
C24	0.1374 (3)	1.0247 (4)	0.13646 (8)	0.0452 (8)
01	-0.1254 (2)	0.5049 (4)	0.07078 (7)	0.0823 (8)
C23	0.2524 (3)	1.2409 (5)	0.17989 (8)	0.0482 (8)
C22	-0.0683 (3)	0.8504 (5)	0.12437 (8)	0.0547 (9)

H22A	-0.1333	0.7701	0.1324	0.066*
C21	0.2249 (3)	1.1173 (5)	0.02085 (8)	0.0536 (9)
C20	-0.2360 (4)	0.5594 (5)	0.07760 (9)	0.0566 (9)
C19	0.2586 (3)	1.0815 (4)	0.16097 (7)	0.0443 (8)
C18	-0.2858 (3)	0.7483 (5)	0.07327 (9)	0.0569 (9)
H18A	-0.3620	0.7518	0.0549	0.068*
H18B	-0.3217	0.7874	0.0960	0.068*
C17	0.0898 (3)	1.2038 (5)	0.02750 (8)	0.0539 (9)
H17A	0.1075	1.3036	0.0437	0.065*
H17B	0.0502	1.2501	0.0047	0.065*
C16	0.3740 (3)	0.9695 (5)	0.16491 (7)	0.0488 (8)
C15	0.0413 (3)	0.9063 (5)	0.14764 (8)	0.0543 (9)
H15A	0.0494	0.8625	0.1712	0.065*
C14	0.4054 (3)	0.8035 (5)	0.14945 (8)	0.0544 (9)
C13	0.1425 (3)	1.3670 (5)	0.18329 (9)	0.0575 (9)
C12	0.5842 (3)	0.8895 (6)	0.18741 (9)	0.0629 (10)
C11	0.5356 (4)	0.7565 (5)	0.16382 (10)	0.0667 (11)
H11A	0.5832	0.6530	0.1586	0.080*
C10	0.3210 (4)	0.6941 (5)	0.12208 (9)	0.0720 (11)
H10A	0.3709	0.5874	0.1170	0.108*
H10B	0.3050	0.7609	0.1001	0.108*
H10C	0.2331	0.6641	0.1317	0.108*
С9	0.4263 (4)	1.5517 (6)	0.24383 (9)	0.0861 (13)
H9A	0.5151	1.4933	0.2464	0.129*
H9B	0.3863	1.5578	0.2671	0.129*
H9C	0.4384	1.6695	0.2347	0.129*
C8	0 7207 (3)	0 8948 (6)	0 20889 (11)	0.0952 (15)
H8A	0.7273	1 0029	0.2227	0.143*
H8B	0.7954	0.8897	0.1927	0.143*
H8C	0 7270	0 7953	0.2251	0.143*
C7	0 3452 (4)	0.8467 (6)	0.01443(12)	0.0840 (13)
H7A	0.4207	0.8733	0.0321	0.101*
H7B	0.3735	0.8809	-0.0094	0.101*
C6	-0.4550(4)	0.1959 (6)	0.00749 (12)	0.0955 (14)
H6A	-0.4454	0.0703	0.1011	0.143*
H6R	-0.5098	0.2180	0.0754	0.143*
HGC	-0.5004	0.2470	0.1175	0.143
C5	0.3318 (4)	1.4503 (5)	0.21813 (9)	0.145 0.0628 (10)
C4	0.3310(4) 0.1942(4)	1.4927 (5)	0.20706 (9)	0.0020(10)
Н4А	0.1455	1.5912	0.2147	0.0003 (10)
P	0.5065 (4)	1.1086 (6)	0.2177 0.20735 (10)	0.0505 (11)
D C3	-0.0018(4)	1.1980 (0)	0.20733 (10)	0.0393(11) 0.0800(12)
НЗА	-0.0504	1.3001 (3)	0.1740	0.0009(12) 0.121*
H3R	-0.0408	1.40))	0.1740	0.121
нзс	0.0470	1.2021	0.1405	0.121*
() ()	-0.3184(4)	0.2748 (5)	0.1403 0.0051/ (12)	0.121
U2 H2A	-0.2714	0.2740 (3)	0.09314 (12)	0.0000 (15)
112A 112D	0.2/14	0.2244	0.0749	0.103*
П2 D	-0.2010	0.2331	0.11/3	0.105°
CI	0.5110 (5)	0.0328 (0)	0.01309 (13)	0.1000 (10)

H1A	0.3918	0.5853	0.0095	0.158*
H1B	0.2364	0.6281	-0.0026	0.158*
H1C	0.2829	0.6207	0.0388	0.158*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O6	0.0483 (12)	0.0693 (17)	0.0549 (13)	-0.0203 (12)	-0.0077 (11)	0.0065 (12)
O5	0.0440 (11)	0.0644 (17)	0.0433 (12)	-0.0055 (11)	-0.0022 (9)	0.0107 (11)
O4	0.0510 (13)	0.0592 (19)	0.0629 (14)	0.0028 (13)	0.0033 (11)	0.0007 (12)
F2	0.0780 (13)	0.1115 (19)	0.0524 (12)	-0.0054 (13)	-0.0198 (10)	-0.0045 (11)
C27	0.0427 (16)	0.048 (2)	0.0469 (18)	-0.0087 (16)	0.0020 (14)	0.0028 (16)
O3	0.0523 (14)	0.085 (2)	0.0860 (17)	-0.0195 (14)	0.0077 (12)	0.0007 (15)
C26	0.0389 (15)	0.045 (2)	0.0430 (18)	0.0013 (16)	-0.0003 (14)	0.0030 (16)
N2	0.0592 (17)	0.055 (2)	0.0455 (15)	-0.0085 (15)	-0.0056 (13)	-0.0067 (14)
C25	0.0404 (16)	0.051 (2)	0.0485 (19)	-0.0083 (16)	-0.0019 (15)	0.0019 (16)
N1	0.0473 (15)	0.063 (2)	0.0497 (15)	0.0006 (15)	-0.0027 (13)	0.0047 (15)
F1	0.0632 (12)	0.0949 (18)	0.1007 (16)	-0.0268 (13)	0.0126 (11)	-0.0043 (13)
O2	0.0625 (15)	0.0504 (18)	0.119 (2)	-0.0049 (13)	0.0233 (14)	0.0027 (15)
C24	0.0443 (17)	0.049 (2)	0.0424 (18)	0.0000 (17)	0.0010 (14)	-0.0006 (16)
01	0.0527 (14)	0.078 (2)	0.117 (2)	0.0019 (14)	0.0122 (14)	-0.0158 (16)
C23	0.0500 (18)	0.053 (2)	0.0415 (18)	-0.0021 (18)	-0.0016 (15)	0.0006 (17)
C22	0.0516 (18)	0.063 (3)	0.049 (2)	-0.0173 (18)	0.0011 (16)	0.0040 (18)
C21	0.051 (2)	0.059 (3)	0.051 (2)	-0.006 (2)	-0.0065 (16)	0.0029 (19)
C20	0.0440 (19)	0.062 (3)	0.063 (2)	-0.004 (2)	-0.0056 (17)	-0.0109 (19)
C19	0.0437 (17)	0.051 (2)	0.0376 (17)	-0.0056 (16)	-0.0003 (14)	0.0027 (16)
C18	0.0426 (17)	0.066 (3)	0.062 (2)	-0.0160 (19)	-0.0021 (16)	0.0035 (19)
C17	0.0470 (18)	0.058 (2)	0.056 (2)	-0.0039 (18)	0.0019 (16)	0.0113 (18)
C16	0.0457 (17)	0.059 (3)	0.0411 (17)	-0.0051 (18)	-0.0008 (14)	0.0038 (17)
C15	0.0577 (19)	0.064 (3)	0.0411 (18)	-0.0140 (19)	0.0001 (16)	0.0066 (16)
C14	0.057 (2)	0.056 (3)	0.051 (2)	0.0013 (19)	0.0070 (16)	0.0000 (18)
C13	0.059 (2)	0.060 (3)	0.054 (2)	0.000 (2)	0.0037 (17)	0.0042 (19)
C12	0.056 (2)	0.076 (3)	0.056 (2)	0.008 (2)	0.0037 (18)	0.012 (2)
C11	0.066 (2)	0.067 (3)	0.067 (2)	0.015 (2)	0.0134 (19)	0.008 (2)
C10	0.086 (3)	0.064 (3)	0.065 (2)	-0.002 (2)	0.007 (2)	-0.011 (2)
C9	0.113 (3)	0.091 (3)	0.054 (2)	-0.027 (3)	-0.007 (2)	-0.019 (2)
C8	0.057 (2)	0.134 (4)	0.093 (3)	0.017 (3)	-0.017 (2)	0.006 (3)
C7	0.059 (2)	0.089 (4)	0.103 (3)	0.014 (2)	0.003 (2)	-0.015 (3)
C6	0.103 (3)	0.067 (3)	0.117 (4)	-0.027 (3)	0.017 (3)	0.001 (3)
C5	0.079 (3)	0.064 (3)	0.0453 (19)	-0.010 (2)	0.0061 (18)	-0.0028 (19)
C4	0.087 (3)	0.055 (3)	0.058 (2)	0.010 (2)	0.010 (2)	-0.006 (2)
В	0.050 (2)	0.079 (4)	0.050 (2)	-0.010 (2)	0.0032 (19)	-0.003 (2)
C3	0.069 (2)	0.082 (3)	0.090 (3)	0.017 (2)	-0.005 (2)	0.002 (2)
C2	0.082 (3)	0.048 (3)	0.126 (4)	-0.002 (2)	-0.003 (2)	-0.002 (2)
C1	0.122 (4)	0.069 (4)	0.123 (4)	0.022 (3)	0.002 (3)	-0.018 (3)
<i>Geometric parameters (Å, °)</i>						

B—N1 1.533 (5) C16—C14 1.415 (5)

B—N2	1.537 (5)	C15—H15A	0.9300
B—F1	1.382 (4)	C14—C11	1.377 (4)
B—F2	1.384 (4)	C14—C10	1.506 (4)
O6—C25	1.377 (3)	C13—C4	1.366 (5)
O6—C18	1.399 (3)	C13—C3	1.486 (4)
O5—C26	1.373 (3)	C12—C11	1.392 (5)
O5—C17	1.413 (3)	C12—C8	1.494 (4)
O4—C21	1.328 (4)	C11—H11A	0.9300
O4—C7	1.448 (4)	C10—H10A	0.9600
C27—C26	1.377 (4)	C10—H10B	0.9600
C27—C24	1.394 (4)	C10—H10C	0.9600
С27—Н27А	0.9300	С9—С5	1.487 (5)
O3—C21	1.206 (4)	С9—Н9А	0.9600
C26—C25	1.389 (4)	С9—Н9В	0.9600
N2—C5	1.346 (4)	С9—Н9С	0.9600
N2—C23	1.402 (4)	C8—H8A	0.9600
C25—C22	1.373 (4)	C8—H8B	0.9600
N1—C12	1.345 (4)	C8—H8C	0.9600
N1—C16	1.404 (4)	C7—C1	1.499 (5)
O2—C20	1.323 (4)	C7—H7A	0.9700
O2—C2	1.461 (4)	С7—Н7В	0.9700
C24—C15	1.365 (4)	C6—C2	1.448 (5)
C24—C19	1.496 (4)	С6—Н6А	0.9600
O1—C20	1.180 (4)	С6—Н6В	0.9600
C23—C19	1.393 (4)	С6—Н6С	0.9600
C23—C13	1.432 (4)	C5—C4	1.398 (5)
C22—C15	1.386 (4)	C4—H4A	0.9300
C22—H22A	0.9300	С3—НЗА	0.9600
C21—C17	1.485 (4)	С3—НЗВ	0.9600
C20—C18	1.508 (5)	С3—НЗС	0.9600
C19—C16	1.395 (4)	C2—H2A	0.9700
C18—H18A	0.9700	С2—Н2В	0.9700
C18—H18B	0.9700	C1—H1A	0.9600
C17—H17A	0.9700	C1—H1B	0.9600
C17—H17B	0.9700	C1—H1C	0.9600
C25—O6—C18	118.2 (2)	C14—C11—C12	108.7 (3)
C26—O5—C17	118.1 (2)	C14—C11—H11A	125.7
C21—O4—C7	116.6 (3)	C12—C11—H11A	125.7
C26—C27—C24	120.1 (3)	C14-C10-H10A	109.5
С26—С27—Н27А	119.9	C14—C10—H10B	109.5
С24—С27—Н27А	119.9	H10A-C10-H10B	109.5
O5—C26—C27	125.8 (3)	C14—C10—H10C	109.5
O5—C26—C25	114.2 (2)	H10A—C10—H10C	109.5
C27—C26—C25	120.0 (3)	H10B-C10-H10C	109.5
C5—N2—C23	108.0 (3)	С5—С9—Н9А	109.5
C5—N2—B	126.9 (3)	С5—С9—Н9В	109.5
С23—N2—В	125.1 (3)	Н9А—С9—Н9В	109.5
C22—C25—O6	125.6 (3)	С5—С9—Н9С	109.5
C22—C25—C26	119.8 (3)	Н9А—С9—Н9С	109.5

O6—C25—C26	114.6 (3)	Н9В—С9—Н9С	109.5
C12—N1—C16	107.9 (3)	С12—С8—Н8А	109.5
C12—N1—B	126.2 (3)	С12—С8—Н8В	109.5
C16—N1—B	125.7 (3)	H8A—C8—H8B	109.5
C20—O2—C2	118.2 (3)	С12—С8—Н8С	109.5
C15—C24—C27	119.2 (3)	H8A—C8—H8C	109.5
C15—C24—C19	121.4 (3)	H8B—C8—H8C	109.5
C27—C24—C19	119.3 (3)	O4—C7—C1	107.1 (3)
C19—C23—N2	120.1 (3)	O4—C7—H7A	110.3
C19—C23—C13	132.0 (3)	С1—С7—Н7А	110.3
N2—C23—C13	107.8 (3)	O4—C7—H7B	110.3
C25—C22—C15	119.8 (3)	С1—С7—Н7В	110.3
C25—C22—H22A	120.1	H7A—C7—H7B	108.6
C15—C22—H22A	120.1	С2—С6—Н6А	109.5
O3—C21—O4	123.7 (3)	С2—С6—Н6В	109.5
O3—C21—C17	123.0 (4)	H6A—C6—H6B	109.5
O4—C21—C17	113.3 (3)	С2—С6—Н6С	109.5
O1—C20—O2	126.1 (4)	H6A—C6—H6C	109.5
O1—C20—C18	126.2 (3)	H6B—C6—H6C	109.5
O2—C20—C18	107.7 (3)	N2C5C4	108.9 (3)
C23—C19—C16	121.8 (3)	N2—C5—C9	124.1 (3)
C23—C19—C24	119.7 (3)	C4—C5—C9	127.0 (4)
C16—C19—C24	118.5 (3)	C13—C4—C5	109.4 (3)
O6—C18—C20	113.8 (3)	C13—C4—H4A	125.3
O6—C18—H18A	108.8	C5—C4—H4A	125.3
C20—C18—H18A	108.8	F1—B—F2	108.9 (3)
O6—C18—H18B	108.8	F1—B—N1	110.3 (3)
C20—C18—H18B	108.8	F2—B—N1	110.7 (3)
H18A—C18—H18B	107.7	F1—B—N2	110.2 (3)
O5—C17—C21	114.8 (3)	F2—B—N2	109.6 (3)
O5—C17—H17A	108.6	N1—B—N2	107.2 (3)
С21—С17—Н17А	108.6	С13—С3—НЗА	109.5
O5—C17—H17B	108.6	С13—С3—Н3В	109.5
С21—С17—Н17В	108.6	НЗА—СЗ—НЗВ	109.5
H17A—C17—H17B	107.5	С13—С3—Н3С	109.5
C19—C16—N1	119.4 (3)	НЗА—СЗ—НЗС	109.5
C19—C16—C14	132.9 (3)	НЗВ—СЗ—НЗС	109.5
N1-C16-C14	107.7 (3)	C6—C2—O2	106.9 (3)
C24—C15—C22	121.0 (3)	С6—С2—Н2А	110.3
C24—C15—H15A	119.5	O2—C2—H2A	110.3
C22—C15—H15A	119.5	C6—C2—H2B	110.3
C11—C14—C16	106.4 (3)	O2—C2—H2B	110.3
C11—C14—C10	124.1 (4)	H2A—C2—H2B	108.6
C16—C14—C10	129.5 (3)	C7—C1—H1A	109.5
C4—C13—C23	105.9 (3)	C7—C1—H1B	109.5
C4—C13—C3	124.6 (3)	H1A—C1—H1B	109.5
C23—C13—C3	129.5 (3)	C7—C1—H1C	109.5
N1—C12—C11	109.3 (3)	H1A—C1—H1C	109.5
N1—C12—C8	123.5 (4)	H1B—C1—H1C	109.5

C11—C12—C8	127.2 (4)		
C17—O5—C26—C27	6.0 (4)	B-N1-C16-C14	173.3 (3)
C17—O5—C26—C25	-174.1 (3)	C27—C24—C15—C22	1.1 (5)
C24—C27—C26—O5	-179.7 (3)	C19—C24—C15—C22	-178.0 (3)
C24—C27—C26—C25	0.5 (5)	C25-C22-C15-C24	0.3 (5)
C18—O6—C25—C22	2.3 (5)	C19—C16—C14—C11	-179.7 (3)
C18—O6—C25—C26	-177.8 (3)	N1-C16-C14-C11	0.9 (3)
O5-C26-C25-C22	-178.9 (3)	C19—C16—C14—C10	1.6 (6)
C27—C26—C25—C22	0.9 (5)	N1-C16-C14-C10	-177.7 (3)
O5—C26—C25—O6	1.1 (4)	C19—C23—C13—C4	176.6 (3)
C27—C26—C25—O6	-179.0 (3)	N2-C23-C13-C4	0.0 (4)
C26—C27—C24—C15	-1.5 (5)	C19—C23—C13—C3	-1.2 (6)
C26—C27—C24—C19	177.6 (3)	N2-C23-C13-C3	-177.7 (3)
C5—N2—C23—C19	-177.7 (3)	C16—N1—C12—C11	1.2 (4)
B-N2-C23-C19	1.5 (5)	B-N1-C12-C11	-173.4 (3)
C5—N2—C23—C13	-0.7 (4)	C16—N1—C12—C8	-179.6 (3)
B—N2—C23—C13	178.5 (3)	B-N1-C12-C8	5.7 (5)
O6-C25-C22-C15	178.6 (3)	C16-C14-C11-C12	-0.2 (4)
C26—C25—C22—C15	-1.3 (5)	C10-C14-C11-C12	178.5 (3)
C7—O4—C21—O3	-3.2 (5)	N1-C12-C11-C14	-0.6 (4)
C7—O4—C21—C17	175.8 (3)	C8-C12-C11-C14	-179.7 (3)
C2—O2—C20—O1	-0.6 (5)	C21—O4—C7—C1	-174.3 (3)
C2—O2—C20—C18	178.2 (3)	C23—N2—C5—C4	1.1 (4)
N2-C23-C19-C16	3.5 (5)	B—N2—C5—C4	-178.1 (3)
C13-C23-C19-C16	-172.7 (3)	C23—N2—C5—C9	180.0 (3)
N2-C23-C19-C24	-178.3 (3)	B—N2—C5—C9	0.8 (5)
C13—C23—C19—C24	5.5 (5)	C23—C13—C4—C5	0.6 (4)
C15—C24—C19—C23	-98.2 (4)	C3—C13—C4—C5	178.5 (3)
C27—C24—C19—C23	82.7 (4)	N2-C5-C4-C13	-1.1 (4)
C15-C24-C19-C16	80.1 (4)	C9—C5—C4—C13	-180.0 (3)
C27—C24—C19—C16	-99.0 (3)	C12—N1—B—F1	63.3 (4)
C25—O6—C18—C20	-73.6 (4)	C16—N1—B—F1	-110.3 (3)
O1-C20-C18-O6	-6.4 (5)	C12—N1—B—F2	-57.2 (4)
O2—C20—C18—O6	174.9 (3)	C16—N1—B—F2	129.1 (3)
C26—O5—C17—C21	69.4 (4)	C12—N1—B—N2	-176.7 (3)
O3—C21—C17—O5	-167.7 (3)	C16—N1—B—N2	9.6 (4)
O4—C21—C17—O5	13.3 (4)	C5—N2—B—F1	-68.2 (4)
C23—C19—C16—N1	-1.3 (4)	C23—N2—B—F1	112.8 (4)
C24—C19—C16—N1	-179.5 (3)	C5—N2—B—F2	51.7 (5)
C23-C19-C16-C14	179.4 (3)	C23—N2—B—F2	-127.4 (3)
C24-C19-C16-C14	1.2 (5)	C5—N2—B—N1	171.8 (3)
C12—N1—C16—C19	179.2 (3)	C23—N2—B—N1	-7.2 (4)
B-N1-C16-C19	-6.1 (5)	C20—O2—C2—C6	-162.9 (3)
C12-N1-C16-C14	-1.3 (3)		

